Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly-Supervised Aspect-Based Sentiment Analysis via Joint Aspect-Sentiment Topic Embedding (2010.06705v1)

Published 13 Oct 2020 in cs.CL, cs.IR, and cs.LG

Abstract: Aspect-based sentiment analysis of review texts is of great value for understanding user feedback in a fine-grained manner. It has in general two sub-tasks: (i) extracting aspects from each review, and (ii) classifying aspect-based reviews by sentiment polarity. In this paper, we propose a weakly-supervised approach for aspect-based sentiment analysis, which uses only a few keywords describing each aspect/sentiment without using any labeled examples. Existing methods are either designed only for one of the sub-tasks, neglecting the benefit of coupling both, or are based on topic models that may contain overlapping concepts. We propose to first learn <sentiment, aspect> joint topic embeddings in the word embedding space by imposing regularizations to encourage topic distinctiveness, and then use neural models to generalize the word-level discriminative information by pre-training the classifiers with embedding-based predictions and self-training them on unlabeled data. Our comprehensive performance analysis shows that our method generates quality joint topics and outperforms the baselines significantly (7.4% and 5.1% F1-score gain on average for aspect and sentiment classification respectively) on benchmark datasets. Our code and data are available at https://github.com/teapot123/JASen.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jiaxin Huang (48 papers)
  2. Yu Meng (92 papers)
  3. Fang Guo (12 papers)
  4. Heng Ji (266 papers)
  5. Jiawei Han (263 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.