Entropy-information inequalities under curvature-dimension conditions for continuous-time Markov chains (2010.06309v1)
Abstract: In the setting of reversible continuous-time Markov chains, the $CD_\Upsilon$ condition has been shown recently to be a consistent analogue to the Bakry-\'Emery condition in the diffusive setting in terms of proving Li-Yau inequalities under a finite dimension term and proving the modified logarithmic Sobolev inequality under a positive curvature bound. In this article we examine the case where both is given, a finite dimension term and a positive curvature bound. For this purpose we introduce the $CD_\Upsilon(\kappa,F)$ condition, where the dimension term is expressed by a so called $CD$-function $F$. We derive functional inequalities relating the entropy to the Fisher information, which we will call entropy-information inequalities. Further, we deduce applications of entropy-information inequalities such as ultracontractivity bounds, exponential integrability of Lipschitz functions, finite diameter bounds and a modified version of the celebrated Nash inequality.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.