Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Sentiment-Controllable Topic-to-Essay Generator with Topic Knowledge Graph

Published 12 Oct 2020 in cs.CL | (2010.05511v1)

Abstract: Generating a vivid, novel, and diverse essay with only several given topic words is a challenging task of natural language generation. In previous work, there are two problems left unsolved: neglect of sentiment beneath the text and insufficient utilization of topic-related knowledge. Therefore, we propose a novel Sentiment-Controllable topic-to-essay generator with a Topic Knowledge Graph enhanced decoder, named SCTKG, which is based on the conditional variational autoencoder (CVAE) framework. We firstly inject the sentiment information into the generator for controlling sentiment for each sentence, which leads to various generated essays. Then we design a Topic Knowledge Graph enhanced decoder. Unlike existing models that use knowledge entities separately, our model treats the knowledge graph as a whole and encodes more structured, connected semantic information in the graph to generate a more relevant essay. Experimental results show that our SCTKG can generate sentiment controllable essays and outperform the state-of-the-art approach in terms of topic relevance, fluency, and diversity on both automatic and human evaluation.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.