Papers
Topics
Authors
Recent
Search
2000 character limit reached

Modeling Human Temporal Uncertainty in Human-Agent Teams

Published 9 Oct 2020 in cs.RO and cs.AI | (2010.04849v1)

Abstract: Automated scheduling is potentially a very useful tool for facilitating efficient, intuitive interactions between a robot and a human teammate. However, a current gapin automated scheduling is that it is not well understood how to best represent the timing uncertainty that human teammates introduce. This paper attempts to address this gap by designing an online human-robot collaborative packaging game that we use to build a model of human timing uncertainty from a population of crowd-workers. We conclude that heavy-tailed distributions are the best models of human temporal uncertainty, with a Log-Normal distribution achieving the best fit to our experimental data. We discuss how these results along with our collaborative online game will inform and facilitate future explorations into scheduling for improved human-robot fluency.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.