Papers
Topics
Authors
Recent
2000 character limit reached

Convex monotone semigroups on lattices of continuous functions

Published 8 Oct 2020 in math.AP | (2010.04594v2)

Abstract: We consider convex monotone $C_0$-semigroups on a Banach lattice, which is assumed to be a Riesz subspace of a $\sigma$-Dedekind complete Banach lattice. Typical examples include the space of all bounded uniformly continuous functions and the space of all continuous functions vanishing at infinity. We show that the domain of the classical generator of a convex semigroup is typically not invariant. Therefore, we propose alternative versions for the domain, such as the monotone domain and the Lipschitz set, for which we prove invariance under the semigroup. As a main result, we obtain the uniqueness of the semigroup in terms of an extended version of the generator. The results are illustrated with several examples related to Hamilton-Jacobi-Bellman equations, including nonlinear versions of the shift semigroup and the heat equation. In particular, we determine their symmetric Lipschitz sets, which are invariant and allow to understand the generators in a weak sense.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.