Intrinsic Hierarchical Clustering Behavior Recovers Higher Dimensional Shape Information (2010.03894v1)
Abstract: We show that specific higher dimensional shape information of point cloud data can be recovered by observing lower dimensional hierarchical clustering dynamics. We generate multiple point samples from point clouds and perform hierarchical clustering within each sample to produce dendrograms. From these dendrograms, we take cluster evolution and merging data that capture clustering behavior to construct simplified diagrams that record the lifetime of clusters akin to what zero dimensional persistence diagrams do in topological data analysis. We compare differences between these diagrams using the bottleneck metric, and examine the resulting distribution. Finally, we show that statistical features drawn from these bottleneck distance distributions detect artefacts of, and can be tapped to recover higher dimensional shape characteristics.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.