Papers
Topics
Authors
Recent
Search
2000 character limit reached

Secure 3D medical Imaging

Published 6 Oct 2020 in eess.IV, cs.CV, and cs.LG | (2010.03367v1)

Abstract: Image segmentation has proved its importance and plays an important role in various domains such as health systems and satellite-oriented military applications. In this context, accuracy, image quality, and execution time deem to be the major issues to always consider. Although many techniques have been applied, and their experimental results have shown appealing achievements for 2D images in real-time environments, however, there is a lack of works about 3D image segmentation despite its importance in improving segmentation accuracy. Specifically, HMM was used in this domain. However, it suffers from the time complexity, which was updated using different accelerators. As it is important to have efficient 3D image segmentation, we propose in this paper a novel system for partitioning the 3D segmentation process across several distributed machines. The concepts behind distributed multi-media network segmentation were employed to accelerate the segmentation computational time of training Hidden Markov Model (HMMs). Furthermore, a secure transmission has been considered in this distributed environment and various bidirectional multimedia security algorithms have been applied. The contribution of this work lies in providing an efficient and secure algorithm for 3D image segmentation. Through a number of extensive experiments, it was proved that our proposed system is of comparable efficiency to the state of art methods in terms of segmentation accuracy, security and execution time.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.