Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Are "Undocumented Workers" the Same as "Illegal Aliens"? Disentangling Denotation and Connotation in Vector Spaces (2010.02976v2)

Published 6 Oct 2020 in cs.CL

Abstract: In politics, neologisms are frequently invented for partisan objectives. For example, "undocumented workers" and "illegal aliens" refer to the same group of people (i.e., they have the same denotation), but they carry clearly different connotations. Examples like these have traditionally posed a challenge to reference-based semantic theories and led to increasing acceptance of alternative theories (e.g., Two-Factor Semantics) among philosophers and cognitive scientists. In NLP, however, popular pretrained models encode both denotation and connotation as one entangled representation. In this study, we propose an adversarial neural network that decomposes a pretrained representation as independent denotation and connotation representations. For intrinsic interpretability, we show that words with the same denotation but different connotations (e.g., "immigrants" vs. "aliens", "estate tax" vs. "death tax") move closer to each other in denotation space while moving further apart in connotation space. For extrinsic application, we train an information retrieval system with our disentangled representations and show that the denotation vectors improve the viewpoint diversity of document rankings.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube