Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LOGAN: Local Group Bias Detection by Clustering (2010.02867v1)

Published 6 Oct 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Machine learning techniques have been widely used in NLP. However, as revealed by many recent studies, machine learning models often inherit and amplify the societal biases in data. Various metrics have been proposed to quantify biases in model predictions. In particular, several of them evaluate disparity in model performance between protected groups and advantaged groups in the test corpus. However, we argue that evaluating bias at the corpus level is not enough for understanding how biases are embedded in a model. In fact, a model with similar aggregated performance between different groups on the entire data may behave differently on instances in a local region. To analyze and detect such local bias, we propose LOGAN, a new bias detection technique based on clustering. Experiments on toxicity classification and object classification tasks show that LOGAN identifies bias in a local region and allows us to better analyze the biases in model predictions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jieyu Zhao (54 papers)
  2. Kai-Wei Chang (292 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.