Papers
Topics
Authors
Recent
Search
2000 character limit reached

Renormalization and Mixing of the Gluino-Glue Operator on the Lattice

Published 6 Oct 2020 in hep-lat | (2010.02683v1)

Abstract: We study the mixing of the Gluino-Glue operator in ${\cal N}$=1 Supersymmetric Yang-Mills theory (SYM), both in dimensional regularization and on the lattice. We calculate its renormalization, which is not only multiplicative, due to the fact that this operator can mix with non-gauge invariant operators of equal or, on the lattice, lower dimension. These operators carry the same quantum numbers under Lorentz transformations and global gauge transformations, and they have the same ghost number. We compute the one-loop quantum correction for the relevant two-point and three-point Green's functions of the Gluino-Glue operator. This allows us to determine renormalization factors of the operator in the $\overline{\textrm{MS}}$ scheme, as well as the mixing coefficients for the other operators. To this end our computations are performed using dimensional and lattice regularizations. We employ a standard discretization where gluinos are defined on lattice sites and gluons reside on the links of the lattice; the discretization is based on Wilson's formulation of non-supersymmetric gauge theories with clover improvement. The number of colors, $N_c$, the gauge parameter, $\beta$, and the clover coefficient, $c_{\rm SW}$, are left as free parameters.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.