Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring the Complexity of Domains Used to Evaluate AI Systems (2010.01985v1)

Published 18 Sep 2020 in cs.AI

Abstract: There is currently a rapid increase in the number of challenge problem, benchmarking datasets and algorithmic optimization tests for evaluating AI systems. However, there does not currently exist an objective measure to determine the complexity between these newly created domains. This lack of cross-domain examination creates an obstacle to effectively research more general AI systems. We propose a theory for measuring the complexity between varied domains. This theory is then evaluated using approximations by a population of neural network based AI systems. The approximations are compared to other well known standards and show it meets intuitions of complexity. An application of this measure is then demonstrated to show its effectiveness as a tool in varied situations. The experimental results show this measure has promise as an effective tool for aiding in the evaluation of AI systems. We propose the future use of such a complexity metric for use in computing an AI system's intelligence.

Citations (3)

Summary

We haven't generated a summary for this paper yet.