Papers
Topics
Authors
Recent
Search
2000 character limit reached

OLALA: Object-Level Active Learning for Efficient Document Layout Annotation

Published 5 Oct 2020 in cs.LG, cs.CV, and stat.ML | (2010.01762v3)

Abstract: Document images often have intricate layout structures, with numerous content regions (e.g. texts, figures, tables) densely arranged on each page. This makes the manual annotation of layout datasets expensive and inefficient. These characteristics also challenge existing active learning methods, as image-level scoring and selection suffer from the overexposure of common objects.Inspired by recent progresses in semi-supervised learning and self-training, we propose an Object-Level Active Learning framework for efficient document layout Annotation, OLALA. In this framework, only regions with the most ambiguous object predictions within an image are selected for annotators to label, optimizing the use of the annotation budget. For unselected predictions, the semi-automatic correction algorithm is proposed to identify certain errors based on prior knowledge of layout structures and rectifies them with minor supervision. Additionally, we carefully design a perturbation-based object scoring function for document images. It governs the object selection process via evaluating prediction ambiguities, and considers both the positions and categories of predicted layout objects. Extensive experiments show that OLALA can significantly boost model performance and improve annotation efficiency, given the same labeling budget. Code for this paper can be accessed via https://github.com/lolipopshock/detectron2_al.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.