Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transformer-Based Neural Text Generation with Syntactic Guidance (2010.01737v1)

Published 5 Oct 2020 in cs.CL

Abstract: We study the problem of using (partial) constituency parse trees as syntactic guidance for controlled text generation. Existing approaches to this problem use recurrent structures, which not only suffer from the long-term dependency problem but also falls short in modeling the tree structure of the syntactic guidance. We propose to leverage the parallelism of Transformer to better incorporate parse trees. Our method first expands a partial template constituency parse tree to a full-fledged parse tree tailored for the input source text, and then uses the expanded tree to guide text generation. The effectiveness of our model in this process hinges upon two new attention mechanisms: 1) a path attention mechanism that forces one node to attend to only other nodes located in its path in the syntax tree to better incorporate syntax guidance; 2) a multi-encoder attention mechanism that allows the decoder to dynamically attend to information from multiple encoders. Our experiments in the controlled paraphrasing task show that our method outperforms SOTA models both semantically and syntactically, improving the best baseline's BLEU score from 11.83 to 26.27.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yinghao Li (27 papers)
  2. Rui Feng (67 papers)
  3. Isaac Rehg (3 papers)
  4. Chao Zhang (907 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.