Papers
Topics
Authors
Recent
2000 character limit reached

Sieving intervals and Siegel zeros

Published 2 Oct 2020 in math.NT | (2010.01211v1)

Abstract: Assuming that there exist (infinitely many) Siegel zeros, we show that the (Rosser-)Jurkat-Richert bounds in the linear sieve cannot be improved, and similarly look at Iwaniec's lower bound on Jacobsthal's problem, as well as minor improvements to the Brun-Titchmarsh Theorem. We also deduce an improved (though conditional) lower bound on the longest gaps between primes, and rework Cram\'er's heuristic in this situation to show that we would expect gaps around $x$ that are significantly larger than $(\log x)2$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.