2000 character limit reached
Sieving intervals and Siegel zeros
Published 2 Oct 2020 in math.NT | (2010.01211v1)
Abstract: Assuming that there exist (infinitely many) Siegel zeros, we show that the (Rosser-)Jurkat-Richert bounds in the linear sieve cannot be improved, and similarly look at Iwaniec's lower bound on Jacobsthal's problem, as well as minor improvements to the Brun-Titchmarsh Theorem. We also deduce an improved (though conditional) lower bound on the longest gaps between primes, and rework Cram\'er's heuristic in this situation to show that we would expect gaps around $x$ that are significantly larger than $(\log x)2$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.