Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven computation of invariant sets of discrete time-invariant black-box systems (1907.12075v5)

Published 28 Jul 2019 in eess.SY, cs.SY, and math.DS

Abstract: We consider the problem of computing the maximal invariant set of discrete-time black-box nonlinear systems without analytic dynamical models. Under the assumption that the system is asymptotically stable, the maximal invariant set coincides with the domain of attraction. A data-driven framework relying on the observation of trajectories is proposed to compute almost-invariant sets, which are invariant almost everywhere except a small subset. Based on these observations, scenario optimization problems are formulated and solved. We show that probabilistic invariance guarantees on the almost-invariant sets can be established. To get explicit expressions of such sets, a set identification procedure is designed with a verification step that provides inner and outer approximations in a probabilistic sense. The proposed data-driven framework is illustrated by several numerical examples.

Citations (25)

Summary

We haven't generated a summary for this paper yet.