Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Invariance for Reference Governors (2310.08679v1)

Published 12 Oct 2023 in eess.SY, cs.SY, math.DS, and math.OC

Abstract: This paper presents a novel approach to synthesizing positive invariant sets for unmodeled nonlinear systems using direct data-driven techniques. The data-driven invariant sets are used to design a data-driven reference governor that selects a reference for the closed-loop system to enforce constraints. Using kernel-basis functions, we solve a semi-definite program to learn a sum-of-squares Lyapunov-like function whose unity level-set is a constraint admissible positive invariant set, which determines the constraint admissible states as well as reference inputs. Leveraging Lipschitz properties of the system, we prove that tightening the model-based design ensures robustness of the data-driven invariant set to the inherent plant uncertainty in a data-driven framework. To mitigate the curse-of-dimensionality, we repose the semi-definite program into a linear program. We validate our approach through two examples: First, we present an illustrative example where we can analytically compute the maximum positive invariant set and compare with the presented data-driven invariant set. Second, we present a practical autonomous driving scenario to demonstrate the utility of the presented method for nonlinear systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Y. Zheng, B. Shyrokau, and T. Keviczky, “3dop: Comfort-oriented motion planning for automated vehicles with active suspensions,” in 2022 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2022, pp. 390–395.
  2. E. Garone, S. Di Cairano, and I. Kolmanovsky, “Reference and command governors for systems with constraints: A survey on theory and applications,” Automatica, vol. 75, pp. 306–328, 2017.
  3. D. Masti, V. Breschi, S. Formentin, and A. Bemporad, “Direct data-driven design of neural reference governors,” in 2020 59th IEEE Conference on Decision and Control (CDC).   IEEE, 2020, pp. 4955–4960.
  4. S. Nakano, T. W. Nguyen, E. Garone, T. Ibuki, and M. Sampei, “Explicit reference governor on so (3) for torque and pointing constraint management,” Automatica, vol. 155, p. 111103, 2023.
  5. D. Bertsekas, “Infinite time reachability of state-space regions by using feedback control,” IEEE Transactions on Automatic Control, vol. 17, no. 5, pp. 604–613, 1972.
  6. E. G. Gilbert and K. T. Tan, “Linear systems with state and control constraints: The theory and application of maximal output admissible sets,” IEEE Transactions on Automatic control, vol. 36, no. 9, pp. 1008–1020, 1991.
  7. P. Wang, W. Zhang, X. Zhang, and S. S. Ge, “Robust invariance-based explicit reference control for constrained linear systems,” Automatica, vol. 143, p. 110433, 2022.
  8. L. Burlion, R. Schieni, and I. V. Kolmanovsky, “A reference governor for linear systems with polynomial constraints,” Automatica, vol. 142, p. 110313, 2022.
  9. S. K. Mulagaleti, A. Bemporad, and M. Zanon, “Data-driven synthesis of robust invariant sets and controllers,” IEEE Control Systems Letters, vol. 6, pp. 1676–1681, 2021.
  10. E. Gilbert and I. Kolmanovsky, “Nonlinear tracking control in the presence of state and control constraints: a generalized reference governor,” Automatica, vol. 38, no. 12, pp. 2063–2073, 2002.
  11. M. Korda, “Computing controlled invariant sets from data using convex optimization,” SIAM Journal on Control and Optimization, vol. 58, no. 5, pp. 2871–2899, 2020.
  12. A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo, “Formal synthesis of lyapunov neural networks,” IEEE Control Systems Letters, vol. 5, no. 3, pp. 773–778, 2020.
  13. S. A. Deka and D. V. Dimarogonas, “Supervised learning of lyapunov functions using laplace averages of approximate koopman eigenfunctions,” IEEE Control Systems Letters, 2023.
  14. Y.-C. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,” Advances in neural information processing systems, vol. 32, 2019.
  15. A. Ribeiro, A. Fioravanti, A. Moutinho, and E. de Paiva, “Nonlinear state-feedback design for vehicle lateral control using sum-of-squares programming,” Vehicle System Dynamics, vol. 60, no. 3, pp. 743–769, 2022.
  16. A. Cotorruelo, M. Hosseinzadeh, D. R. Ramirez, D. Limon, and E. Garone, “Reference dependent invariant sets: Sum of squares based computation and applications in constrained control,” Automatica, vol. 129, p. 109614, 2021.
  17. S. M. Richards, F. Berkenkamp, and A. Krause, “The lyapunov neural network: Adaptive stability certification for safe learning of dynamical systems,” in Conference on Robot Learning.   PMLR, 2018, pp. 466–476.
  18. J. Osorio, M. Santillo, J. B. Seeds, M. Jankovic, and H. R. Ossareh, “A novel reference governor approach for constraint management of nonlinear systems,” Automatica, vol. 146, p. 110554, 2022.
  19. S. Kurt and L. Martin, “Flatness of discrete-time systems, a simple approach,” arXiv preprint arXiv:2303.05158, 2023.
  20. F. B. Mathiesen, S. C. Calvert, and L. Laurenti, “Safety certification for stochastic systems via neural barrier functions,” IEEE Control Systems Letters, vol. 7, pp. 973–978, 2022.
  21. J. Anderson and A. Papachristodoulou, “Advances in computational lyapunov analysis using sum-of-squares programming.” Discrete & Continuous Dynamical Systems-Series B, vol. 20, no. 8, 2015.
  22. A. Chakrabarty, D. K. Jha, G. T. Buzzard, Y. Wang, and K. G. Vamvoudakis, “Safe approximate dynamic programming via kernelized lipschitz estimation,” IEEE transactions on neural networks and learning systems, vol. 32, no. 1, pp. 405–419, 2020.

Summary

We haven't generated a summary for this paper yet.