Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Stability of the multi-solitons of the modified Korteweg-de Vries equation (2010.00814v1)

Published 2 Oct 2020 in math.AP

Abstract: We establish the nonlinear stability of $N$-soliton solutions of the modified Korteweg-de Vries (mKdV) equation. The $N$-soliton solutions are global solutions of mKdV behaving at (positive and negative) time infinity as sums of $1$-solitons with speeds $0<c_1<\cdots< c_N$.The proof relies on the variational characterization of $N$-solitons. We show that the $N$-solitons realize the local minimum of the $(N+1)$-th mKdV conserved quantity subject to fixed constraints on the $N$ first conserved quantities.To this aim, we construct a functional for which $N$-solitons are critical points, we prove that the spectral properties of the linearization of this functional around a $N$-soliton are preserved on the extended timeline, and we analyze the spectrum at infinity of linearized operators around $1$-solitons. The main new ingredients in our analysis are a new operator identity based on a generalized Sylvester law of inertia and recursion operators for the mKdV equation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.