Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Supervised Heart Rate Tracking using Wrist-Type Photoplethysmographic (PPG) Signals during Physical Exercise without Simultaneous Acceleration Signals (2010.00769v1)

Published 2 Oct 2020 in eess.SP

Abstract: PPG based heart rate (HR) monitoring has recently attracted much attention with the advent of wearable devices such as smart watches and smart bands. However, due to severe motion artifacts (MA) caused by wristband stumbles, PPG based HR monitoring is a challenging problem in scenarios where the subject performs intensive physical exercises. This work proposes a novel approach to the problem based on supervised learning by Neural Network (NN). By simulations on the benchmark datasets [1], we achieve acceptable estimation accuracy and improved run time in comparison with the literature. A major contribution of this work is that it alleviates the need to use simultaneous acceleration signals. The simulation results show that although the proposed method does not process the simultaneous acceleration signals, it still achieves the acceptable Mean Absolute Error (MAE) of 1.39 Beats Per Minute (BPM) on the benchmark data set.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.