Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stability of two-dimensional Markov processes, with an application to QBD processes with an infinite number of phases (2009.14779v1)

Published 30 Sep 2020 in math.PR

Abstract: In this paper, we derive a simple drift condition for the stability of a class of two-dimensional Markov processes, for which one of the coordinates (also referred to as the {\em phase} for convenience) has a well understood behaviour dependent on the other coordinate (also referred as {\em level}). The first (phase) component's transitions may depend on the second component and are only assumed to be eventually independent. The second (level) component has partially bounded jumps and it is assumed to have a negative drift given that the first one is in its stationary distribution. The results presented in this work can be applied to processes of the QBD (quasi-birth-and-death) type on the quarter- and on the half-plane, where the phase and level are interdependent. Furthermore, they provide an off-the-shelf technique to tackle stability issues for a class of two-dimensional Markov processes. These results set the stepping stones towards closing the existing gap in the literature of deriving easily verifiable conditions/criteria for two-dimensional processes with unbounded jumps and interdependence between the two components.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.