Papers
Topics
Authors
Recent
2000 character limit reached

RTFE: A Recursive Temporal Fact Embedding Framework for Temporal Knowledge Graph Completion

Published 30 Sep 2020 in cs.AI | (2009.14653v4)

Abstract: Static knowledge graph (SKG) embedding (SKGE) has been studied intensively in the past years. Recently, temporal knowledge graph (TKG) embedding (TKGE) has emerged. In this paper, we propose a Recursive Temporal Fact Embedding (RTFE) framework to transplant SKGE models to TKGs and to enhance the performance of existing TKGE models for TKG completion. Different from previous work which ignores the continuity of states of TKG in time evolution, we treat the sequence of graphs as a Markov chain, which transitions from the previous state to the next state. RTFE takes the SKGE to initialize the embeddings of TKG. Then it recursively tracks the state transition of TKG by passing updated parameters/features between timestamps. Specifically, at each timestamp, we approximate the state transition as the gradient update process. Since RTFE learns each timestamp recursively, it can naturally transit to future timestamps. Experiments on five TKG datasets show the effectiveness of RTFE.

Citations (24)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.