Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble Multi-Source Domain Adaptation with Pseudolabels (2009.14248v1)

Published 29 Sep 2020 in cs.LG and stat.ML

Abstract: Given multiple source datasets with labels, how can we train a target model with no labeled data? Multi-source domain adaptation (MSDA) aims to train a model using multiple source datasets different from a target dataset in the absence of target data labels. MSDA is a crucial problem applicable to many practical cases where labels for the target data are unavailable due to privacy issues. Existing MSDA frameworks are limited since they align data without considering conditional distributions p(x|y) of each domain. They also miss a lot of target label information by not considering the target label at all and relying on only one feature extractor. In this paper, we propose Ensemble Multi-source Domain Adaptation with Pseudolabels (EnMDAP), a novel method for multi-source domain adaptation. EnMDAP exploits label-wise moment matching to align conditional distributions p(x|y), using pseudolabels for the unavailable target labels, and introduces ensemble learning theme by using multiple feature extractors for accurate domain adaptation. Extensive experiments show that EnMDAP provides the state-of-the-art performance for multi-source domain adaptation tasks in both of image domains and text domains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Seongmin Lee (32 papers)
  2. Hyunsik Jeon (11 papers)
  3. U Kang (43 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.