Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mathematical derivation for Vora-Value based filter design method: Gradient and Hessian (2009.13696v2)

Published 29 Sep 2020 in math.OC and cs.CV

Abstract: In this paper, we present the detailed mathematical derivation of the gradient and Hessian matrix for the Vora-Value based colorimetric filter optimization. We make a full recapitulation of the steps involved in differentiating the objective function and reveal the positive-definite Hessian matrix when a positive regularizer is applied. This paper serves as a supplementary material for our paper in the colorimetric filter design theory.

Citations (1)

Summary

We haven't generated a summary for this paper yet.