Papers
Topics
Authors
Recent
2000 character limit reached

Weakly Supervised Deep Functional Map for Shape Matching

Published 28 Sep 2020 in cs.CV, cs.GR, and cs.LG | (2009.13339v1)

Abstract: A variety of deep functional maps have been proposed recently, from fully supervised to totally unsupervised, with a range of loss functions as well as different regularization terms. However, it is still not clear what are minimum ingredients of a deep functional map pipeline and whether such ingredients unify or generalize all recent work on deep functional maps. We show empirically minimum components for obtaining state of the art results with different loss functions, supervised as well as unsupervised. Furthermore, we propose a novel framework designed for both full-to-full as well as partial to full shape matching that achieves state of the art results on several benchmark datasets outperforming even the fully supervised methods by a significant margin. Our code is publicly available at https://github.com/Not-IITian/Weakly-supervised-Functional-map

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.