Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Analytical Solution of the Balitsky-Kovchegov Equation with the Homogeneous Balance Method

Published 28 Sep 2020 in hep-ph | (2009.13325v2)

Abstract: Nonlinear QCD evolution equations are essential tools in understanding the saturation of partons at small Bjorken $x_{\rm B}$, as they are supposed to restore an upper bound of unitarity for the cross section of high energy scattering. In this paper, we present an analytical solution of Balitsky-Kovchegov (BK) equation using the homogeneous balance method. The obtained analytical solution is similar to the solution of a traveling wave. By matching the gluon distribution in the dilute region which is determined from the global analysis of experimental data (CT14 analysis), we get a definitive solution of the dipole-proton forward scattering amplitude in the momentum space. Based on the acquired scattering amplitude and the behavior of geometric scaling, we present also a new estimated saturation scale $Q_s2(x)$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.