Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-scale Receptive Fields Graph Attention Network for Point Cloud Classification (2009.13289v1)

Published 28 Sep 2020 in cs.CV

Abstract: Understanding the implication of point cloud is still challenging to achieve the goal of classification or segmentation due to the irregular and sparse structure of point cloud. As we have known, PointNet architecture as a ground-breaking work for point cloud which can learn efficiently shape features directly on unordered 3D point cloud and have achieved favorable performance. However, this model fail to consider the fine-grained semantic information of local structure for point cloud. Afterwards, many valuable works are proposed to enhance the performance of PointNet by means of semantic features of local patch for point cloud. In this paper, a multi-scale receptive fields graph attention network (named after MRFGAT) for point cloud classification is proposed. By focusing on the local fine features of point cloud and applying multi attention modules based on channel affinity, the learned feature map for our network can well capture the abundant features information of point cloud. The proposed MRFGAT architecture is tested on ModelNet10 and ModelNet40 datasets, and results show it achieves state-of-the-art performance in shape classification tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xi-An Li (4 papers)
  2. Lei Zhang (1689 papers)
  3. Li-Yan Wang (1 paper)
  4. Jian Lu (81 papers)
Citations (7)