Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Concentrated Multi-Grained Multi-Attention Network for Video Based Person Re-Identification (2009.13019v1)

Published 28 Sep 2020 in cs.CV

Abstract: Occlusion is still a severe problem in the video-based Re-IDentification (Re-ID) task, which has a great impact on the success rate. The attention mechanism has been proved to be helpful in solving the occlusion problem by a large number of existing methods. However, their attention mechanisms still lack the capability to extract sufficient discriminative information into the final representations from the videos. The single attention module scheme employed by existing methods cannot exploit multi-scale spatial cues, and the attention of the single module will be dispersed by multiple salient parts of the person. In this paper, we propose a Concentrated Multi-grained Multi-Attention Network (CMMANet) where two multi-attention modules are designed to extract multi-grained information through processing multi-scale intermediate features. Furthermore, multiple attention submodules in each multi-attention module can automatically discover multiple discriminative regions of the video frames. To achieve this goal, we introduce a diversity loss to diversify the submodules in each multi-attention module, and a concentration loss to integrate their attention responses so that each submodule can strongly focus on a specific meaningful part. The experimental results show that the proposed approach outperforms the state-of-the-art methods by large margins on multiple public datasets.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.