Papers
Topics
Authors
Recent
Search
2000 character limit reached

High Fidelity Entangling Gates in a 3D Ion Crystal under Micromotion

Published 28 Sep 2020 in quant-ph and physics.atom-ph | (2009.13007v2)

Abstract: Ion trap is one of the most promising candidates for quantum computing. Current schemes mainly focus on a linear chain of up to about one hundred ions in a Paul trap. To further scale up the qubit number, one possible direction is to use 2D or 3D ion crystals (Wigner crystals). In these systems, ions are generally subjected to large micromotion due to the strong fast-oscillating electric field, which can significantly influence the performance of entangling gates. In this work, we develop an efficient numerical method to design high-fidelity entangling gates in a general 3D ion crystal. We present numerical algorithms to solve the equilibrium configuration of the ions and their collective normal modes. We then give a mathematical description of the micromotion and use it to generalize the gate scheme for linear ion chains into a general 3D crystal. The involved time integral of highly oscillatory functions is expanded into a fast-converging series for accurate and efficient evaluation and optimization. As a numerical example, we show a high-fidelity entangling gate design between two ions in a 100-ion crystal, with a theoretical fidelity of 99.9\%.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.