Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Introduction to the Deviatoric Tensor Decomposition in Three Dimensions and its Multipole Representation (2009.11723v1)

Published 23 Sep 2020 in math.GM

Abstract: The analysis and visualization of tensor fields is a very challenging task. Besides the cases of zeroth- and first-order tensors, most techniques focus on symmetric second-order tensors. Only a few works concern totally symmetric tensors of higher-order. Work on other tensors of higher-order than two is exceptionally rare. We believe that one major reason for this gap is the lack of knowledge about suitable tensor decompositions for the general higher-order tensors. We focus here on three dimensions as most applications are concerned with three-dimensional space. A lot of work on symmetric second-order tensors uses the spectral decomposition. The work on totally symmetric higher-order tensors deals frequently with a decomposition based on spherical harmonics. These decompositions do not directly apply to general tensors of higher-order in three dimensions. However, another option available is the deviatoric decomposition for such tensors, splitting them into deviators. Together with the multipole representation of deviators, it allows to describe any tensor in three dimensions uniquely by a set of directions and non-negative scalars. The specific appeal of this methodology is its general applicability, opening up a potentially general route to tensor interpretation. The underlying concepts, however, are not broadly understood in the engineering community. In this article, we therefore gather information about this decomposition from a range of literature sources. The goal is to collect and prepare the material for further analysis and give other researchers the chance to work in this direction. This article wants to stimulate the use of this decomposition and the search for interpretation of this unique algebraic property. A first step in this direction is given by a detailed analysis of the multipole representation of symmetric second-order three-dimensional tensors.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.