Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Betti Numbers of Finite Volume Hyperbolic Manifolds (2009.11431v3)

Published 24 Sep 2020 in math.DG and math.GT

Abstract: We obtain strong upper bounds for the Betti numbers of compact complex-hyperbolic manifolds. We use the unitary holonomy to improve the results given by the most direct application of the techniques of [DS17]. We also provide effective upper bounds for Betti numbers of compact quaternionic- and Cayley-hyperbolic manifolds in most degrees. More importantly, we extend our techniques to complete finite volume real- and complex-hyperbolic manifolds. In this setting, we develop new monotonicity inequalities for strongly harmonic forms on hyperbolic cusps and employ a new peaking argument to estimate $L2$-cohomology ranks. Finally, we provide bounds on the de Rham cohomology of such spaces, using a combination of our bounds on $L2$-cohomology, bounds on the number of cusps in terms of the volume, and the topological interpretation of reduced $L2$-cohomology on certain rank one locally symmetric spaces.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.