Uniform convergence of an upwind discontinuous Galerkin method for solving scaled discrete-ordinate radiative transfer equations with isotropic scattering kernel
Abstract: We present an error analysis for the discontinuous Galerkin method applied to the discrete-ordinate discretization of the steady-state radiative transfer equation. Under some mild assumptions, we show that the DG method converges uniformly with respect to a scaling parameter $\varepsilon$ which characterizes the strength of scattering in the system. However, the rate is not optimal and can be polluted by the presence of boundary layers. In one-dimensional slab geometries, we demonstrate optimal convergence when boundary layers are not present and analyze a simple strategy for balance interior and boundary layer errors. Some numerical tests are also provided in this reduced setting.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.