Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Simple Yet Effective Method for Video Temporal Grounding with Cross-Modality Attention

Published 23 Sep 2020 in cs.CV | (2009.11232v1)

Abstract: The task of language-guided video temporal grounding is to localize the particular video clip corresponding to a query sentence in an untrimmed video. Though progress has been made continuously in this field, some issues still need to be resolved. First, most of the existing methods rely on the combination of multiple complicated modules to solve the task. Second, due to the semantic gaps between the two different modalities, aligning the information at different granularities (local and global) between the video and the language is significant, which is less addressed. Last, previous works do not consider the inevitable annotation bias due to the ambiguities of action boundaries. To address these limitations, we propose a simple two-branch Cross-Modality Attention (CMA) module with intuitive structure design, which alternatively modulates two modalities for better matching the information both locally and globally. In addition, we introduce a new task-specific regression loss function, which improves the temporal grounding accuracy by alleviating the impact of annotation bias. We conduct extensive experiments to validate our method, and the results show that just with this simple model, it can outperform the state of the arts on both Charades-STA and ActivityNet Captions datasets.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.