Papers
Topics
Authors
Recent
2000 character limit reached

Randomized fast no-loss expert system to play tic tac toe like a human

Published 23 Sep 2020 in cs.AI, cs.GT, cs.HC, and cs.MA | (2009.11225v2)

Abstract: This paper introduces a blazingly fast, no-loss expert system for Tic Tac Toe using Decision Trees called T3DT, that tries to emulate human gameplay as closely as possible. It does not make use of any brute force, minimax or evolutionary techniques, but is still always unbeatable. In order to make the gameplay more human-like, randomization is prioritized and T3DT randomly chooses one of the multiple optimal moves at each step. Since it does not need to analyse the complete game tree at any point, T3DT is exceptionally faster than any brute force or minimax algorithm, this has been shown theoretically as well as empirically from clock-time analyses in this paper. T3DT also doesn't need the data sets or the time to train an evolutionary model, making it a practical no-loss approach to play Tic Tac Toe.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.