Papers
Topics
Authors
Recent
Search
2000 character limit reached

DeepIaC: Deep Learning-Based Linguistic Anti-pattern Detection in IaC

Published 22 Sep 2020 in cs.SE | (2009.10801v1)

Abstract: Linguistic anti-patterns are recurring poor practices concerning inconsistencies among the naming, documentation, and implementation of an entity. They impede readability, understandability, and maintainability of source code. This paper attempts to detect linguistic anti-patterns in infrastructure as code (IaC) scripts used to provision and manage computing environments. In particular, we consider inconsistencies between the logic/body of IaC code units and their names. To this end, we propose a novel automated approach that employs word embeddings and deep learning techniques. We build and use the abstract syntax tree of IaC code units to create their code embedments. Our experiments with a dataset systematically extracted from open source repositories show that our approach yields an accuracy between0.785and0.915in detecting inconsistencies

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.