Entropy-Transport distances between unbalanced metric measure spaces (2009.10636v2)
Abstract: Inspired by the recent theory of Entropy-Transport problems and by the $\mathbf{D}$-distance of Sturm on normalised metric measure spaces, we define a new class of complete and separable distances between metric measure spaces of possibly different total mass. We provide several explicit examples of such distances, where a prominent role is played by a geodesic metric based on the Hellinger-Kantorovich distance. Moreover, we discuss some limiting cases of the theory, recovering the "pure transport" $\mathbf{D}$-distance and introducing a new class of "pure entropic" distances. We also study in detail the topology induced by such Entropy-Transport metrics, showing some compactness and stability results for metric measure spaces satisfying Ricci curvature lower bounds in a synthetic sense.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.