Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Learning of Non-Rigid Residual Flow and Ego-Motion (2009.10467v2)

Published 22 Sep 2020 in cs.CV and cs.LG

Abstract: Most of the current scene flow methods choose to model scene flow as a per point translation vector without differentiating between static and dynamic components of 3D motion. In this work we present an alternative method for end-to-end scene flow learning by joint estimation of non-rigid residual flow and ego-motion flow for dynamic 3D scenes. We propose to learn the relative rigid transformation from a pair of point clouds followed by an iterative refinement. We then learn the non-rigid flow from transformed inputs with the deducted rigid part of the flow. Furthermore, we extend the supervised framework with self-supervisory signals based on the temporal consistency property of a point cloud sequence. Our solution allows both training in a supervised mode complemented by self-supervisory loss terms as well as training in a fully self-supervised mode. We demonstrate that decomposition of scene flow into non-rigid flow and ego-motion flow along with an introduction of the self-supervisory signals allowed us to outperform the current state-of-the-art supervised methods.

Citations (59)

Summary

We haven't generated a summary for this paper yet.