Papers
Topics
Authors
Recent
2000 character limit reached

Selectivity correction with online machine learning

Published 21 Sep 2020 in cs.DB | (2009.09884v1)

Abstract: Computer systems are full of heuristic rules which drive the decisions they make. These rules of thumb are designed to work well on average, but ignore specific information about the available context, and are thus sub-optimal. The emerging field of machine learning for systems attempts to learn decision rules with machine learning algorithms. In the database community, many recent proposals have been made to improve selectivity estimation with batch machine learning methods. Such methods are all batch methods which require retraining and cannot handle concept drift, such as workload changes and schema modifications. We present online machine learning as an alternative approach. Online models learn on the fly and do not require storing data, they are more lightweight than batch models, and finally may adapt to concept drift. As an experiment, we teach models to improve the selectivity estimates made by PostgreSQL's cost model. Our experiments make the case that simple online models are able to compete with a recently proposed deep learning method.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.