Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepActsNet: Spatial and Motion features from Face, Hands, and Body Combined with Convolutional and Graph Networks for Improved Action Recognition (2009.09818v3)

Published 21 Sep 2020 in cs.CV

Abstract: Existing action recognition methods mainly focus on joint and bone information in human body skeleton data due to its robustness to complex backgrounds and dynamic characteristics of the environments. In this paper, we combine body skeleton data with spatial and motion features from face and two hands, and present "Deep Action Stamps (DeepActs)", a novel data representation to encode actions from video sequences. We also present "DeepActsNet", a deep learning based ensemble model which learns convolutional and structural features from Deep Action Stamps for highly accurate action recognition. Experiments on three challenging action recognition datasets (NTU60, NTU120, and SYSU) show that the proposed model trained using Deep Action Stamps produce considerable improvements in the action recognition accuracy with less computational cost compared to the state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.