Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Distributed Differential Privacy and Counting Distinct Elements

Published 21 Sep 2020 in cs.CR, cs.DS, cs.LG, and stat.ML | (2009.09604v1)

Abstract: We study the setup where each of $n$ users holds an element from a discrete set, and the goal is to count the number of distinct elements across all users, under the constraint of $(\epsilon, \delta)$-differentially privacy: - In the non-interactive local setting, we prove that the additive error of any protocol is $\Omega(n)$ for any constant $\epsilon$ and for any $\delta$ inverse polynomial in $n$. - In the single-message shuffle setting, we prove a lower bound of $\Omega(n)$ on the error for any constant $\epsilon$ and for some $\delta$ inverse quasi-polynomial in $n$. We do so by building on the moment-matching method from the literature on distribution estimation. - In the multi-message shuffle setting, we give a protocol with at most one message per user in expectation and with an error of $\tilde{O}(\sqrt(n))$ for any constant $\epsilon$ and for any $\delta$ inverse polynomial in $n$. Our protocol is also robustly shuffle private, and our error of $\sqrt(n)$ matches a known lower bound for such protocols. Our proof technique relies on a new notion, that we call dominated protocols, and which can also be used to obtain the first non-trivial lower bounds against multi-message shuffle protocols for the well-studied problems of selection and learning parity. Our first lower bound for estimating the number of distinct elements provides the first $\omega(\sqrt(n))$ separation between global sensitivity and error in local differential privacy, thus answering an open question of Vadhan (2017). We also provide a simple construction that gives $\tilde{\Omega}(n)$ separation between global sensitivity and error in two-party differential privacy, thereby answering an open question of McGregor et al. (2011).

Citations (27)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.