Singular equivalences induced by bimodules and quadratic monomial algebras (2009.09356v1)
Abstract: We investigate the problem when the tensor functor by a bimodule yields a singular equivalence. It turns out that this problem is equivalent to the one when the Hom functor given by the same bimodule induces a triangle equivalence between the homotopy categories of acyclic complexes of injective modules. We give conditions on when a bimodule appears in a pair of bimodules, that defines a singular equivalence with level. We construct an explicit bimodule, which yields a singular equivalence between a quadratic monomial algebra and its associated algebra with radical square zero. Under certain conditions which include the Gorenstein cases, the bimodule does appear in a pair of bimodules defining a singular equivalence with level.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.