Papers
Topics
Authors
Recent
2000 character limit reached

Humans learn too: Better Human-AI Interaction using Optimized Human Inputs

Published 19 Sep 2020 in cs.HC, cs.AI, and cs.CV | (2009.09266v1)

Abstract: Humans rely more and more on systems with AI components. The AI community typically treats human inputs as a given and optimizes AI models only. This thinking is one-sided and it neglects the fact that humans can learn, too. In this work, human inputs are optimized for better interaction with an AI model while keeping the model fixed. The optimized inputs are accompanied by instructions on how to create them. They allow humans to save time and cut on errors, while keeping required changes to original inputs limited. We propose continuous and discrete optimization methods modifying samples in an iterative fashion. Our quantitative and qualitative evaluation including a human study on different hand-generated inputs shows that the generated proposals lead to lower error rates, require less effort to create and differ only modestly from the original samples.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.