Papers
Topics
Authors
Recent
2000 character limit reached

SREC: Proactive Self-Remedy of Energy-Constrained UAV-Based Networks via Deep Reinforcement Learning

Published 17 Sep 2020 in cs.LG, cs.SY, eess.SP, and eess.SY | (2009.08528v1)

Abstract: Energy-aware control for multiple unmanned aerial vehicles (UAVs) is one of the major research interests in UAV based networking. Yet few existing works have focused on how the network should react around the timing when the UAV lineup is changed. In this work, we study proactive self-remedy of energy-constrained UAV networks when one or more UAVs are short of energy and about to quit for charging. We target at an energy-aware optimal UAV control policy which proactively relocates the UAVs when any UAV is about to quit the network, rather than passively dispatches the remaining UAVs after the quit. Specifically, a deep reinforcement learning (DRL)-based self remedy approach, named SREC-DRL, is proposed to maximize the accumulated user satisfaction scores for a certain period within which at least one UAV will quit the network. To handle the continuous state and action space in the problem, the state-of-the-art algorithm of the actor-critic DRL, i.e., deep deterministic policy gradient (DDPG), is applied with better convergence stability. Numerical results demonstrate that compared with the passive reaction method, the proposed SREC-DRL approach shows a $12.12\%$ gain in accumulative user satisfaction score during the remedy period.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.