Papers
Topics
Authors
Recent
2000 character limit reached

Extending SLURM for Dynamic Resource-Aware Adaptive Batch Scheduling

Published 16 Sep 2020 in cs.DC and cs.SE | (2009.08289v2)

Abstract: With the growing constraints on power budget and increasing hardware failure rates, the operation of future exascale systems faces several challenges. Towards this, resource awareness and adaptivity by enabling malleable jobs has been actively researched in the HPC community. Malleable jobs can change their computing resources at runtime and can significantly improve HPC system performance. However, due to the rigid nature of popular parallel programming paradigms such as MPI and lack of support for dynamic resource management in batch systems, malleable jobs have been largely unrealized. In this paper, we extend the SLURM batch system to support the execution and batch scheduling of malleable jobs. The malleable applications are written using a new adaptive parallel paradigm called Invasive MPI which extends the MPI standard to support resource-adaptivity at runtime. We propose two malleable job scheduling strategies to support performance-aware and power-aware dynamic reconfiguration decisions at runtime. We implement the strategies in SLURM and evaluate them on a production HPC system. Results for our performance-aware scheduling strategy show improvements in makespan, average system utilization, average response, and waiting times as compared to other scheduling strategies. Moreover, we demonstrate dynamic power corridor management using our power-aware strategy.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.