Papers
Topics
Authors
Recent
2000 character limit reached

Multi$^2$OIE: Multilingual Open Information Extraction Based on Multi-Head Attention with BERT

Published 17 Sep 2020 in cs.CL and cs.LG | (2009.08128v2)

Abstract: In this paper, we propose Multi$2$OIE, which performs open information extraction (open IE) by combining BERT with multi-head attention. Our model is a sequence-labeling system with an efficient and effective argument extraction method. We use a query, key, and value setting inspired by the Multimodal Transformer to replace the previously used bidirectional long short-term memory architecture with multi-head attention. Multi$2$OIE outperforms existing sequence-labeling systems with high computational efficiency on two benchmark evaluation datasets, Re-OIE2016 and CaRB. Additionally, we apply the proposed method to multilingual open IE using multilingual BERT. Experimental results on new benchmark datasets introduced for two languages (Spanish and Portuguese) demonstrate that our model outperforms other multilingual systems without training data for the target languages.

Citations (53)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.