Papers
Topics
Authors
Recent
Search
2000 character limit reached

How-to Present News on Social Media: A Causal Analysis of Editing News Headlines for Boosting User Engagement

Published 17 Sep 2020 in cs.SI and cs.CL | (2009.08100v2)

Abstract: To reach a broader audience and optimize traffic toward news articles, media outlets commonly run social media accounts and share their content with a short text summary. Despite its importance of writing a compelling message in sharing articles, the research community does not own a sufficient understanding of what kinds of editing strategies effectively promote audience engagement. In this study, we aim to fill the gap by analyzing media outlets' current practices using a data-driven approach. We first build a parallel corpus of original news articles and their corresponding tweets that eight media outlets shared. Then, we explore how those media edited tweets against original headlines and the effects of such changes. To estimate the effects of editing news headlines for social media sharing in audience engagement, we present a systematic analysis that incorporates a causal inference technique with deep learning; using propensity score matching, it allows for estimating potential (dis-)advantages of an editing style compared to counterfactual cases where a similar news article is shared with a different style. According to the analyses of various editing styles, we report common and differing effects of the styles across the outlets. To understand the effects of various editing styles, media outlets could apply our easy-to-use tool by themselves.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.