Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Geometric series expansion of the Neumann-Poincaré operator: application to composite materials (2009.07920v1)

Published 16 Sep 2020 in math.AP

Abstract: The Neumann-Poincar\'{e} operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the Neumann-Poincar\'{e} operator was developed in two dimensions based on geometric function theory. In this paper, we investigate geometric properties of composite materials by using this series expansion. In particular, we obtain explicit formulas for the polarization tensor and the effective conductivity for an inclusion or a periodic array of inclusions of arbitrary shape with extremal conductivity, in terms of the associated exterior conformal mapping. Also, we observe by numerical computations that the spectrum of the Neumann--Poincar\'{e} operator has a monotonic behavior with respect to the shape deformation of the inclusion. Additionally, we derive inequality relations of the coefficients of the Riemann mapping of an arbitrary Lipschitz domain by using the properties of the polarization tensor corresponding to the domain.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube