Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A strongly aperiodic shift of finite type on the discrete Heisenberg group using Robinson tilings (2009.07751v2)

Published 16 Sep 2020 in math.DS

Abstract: We explicitly construct a strongly aperiodic subshift of finite type for the discrete Heisenberg group. Our example builds on the classical aperiodic tilings of the plane due to Raphael Robinson. Extending those tilings to the Heisenberg group by exploiting the group's structure and posing additional local rules to prune out remaining periodic behavior we maintain a rich projective subdynamics on $\mathbb Z2$ cosets. In addition the obtained subshift factors onto a strongly aperiodic, minimal sofic shift via a map that is invertible on a dense set of configurations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube