Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Guided Learning: Towards Open Domain Egocentric Action Recognition with Zero Supervision (2009.07470v2)

Published 16 Sep 2020 in cs.CV and cs.AI

Abstract: Advances in deep learning have enabled the development of models that have exhibited a remarkable tendency to recognize and even localize actions in videos. However, they tend to experience errors when faced with scenes or examples beyond their initial training environment. Hence, they fail to adapt to new domains without significant retraining with large amounts of annotated data. In this paper, we propose to overcome these limitations by moving to an open-world setting by decoupling the ideas of recognition and reasoning. Building upon the compositional representation offered by Grenander's Pattern Theory formalism, we show that attention and commonsense knowledge can be used to enable the self-supervised discovery of novel actions in egocentric videos in an open-world setting, where data from the observed environment (the target domain) is open i.e., the vocabulary is partially known and training examples (both labeled and unlabeled) are not available. We show that our approach can infer and learn novel classes for open vocabulary classification in egocentric videos and novel object detection with zero supervision. Extensive experiments show its competitive performance on two publicly available egocentric action recognition datasets (GTEA Gaze and GTEA Gaze+) under open-world conditions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sathyanarayanan N. Aakur (24 papers)
  2. Sanjoy Kundu (9 papers)
  3. Nikhil Gunti (1 paper)
Citations (1)