Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-span Style Extraction for Generative Reading Comprehension

Published 15 Sep 2020 in cs.CL | (2009.07382v2)

Abstract: Generative machine reading comprehension (MRC) requires a model to generate well-formed answers. For this type of MRC, answer generation method is crucial to the model performance. However, generative models, which are supposed to be the right model for the task, in generally perform poorly. At the same time, single-span extraction models have been proven effective for extractive MRC, where the answer is constrained to a single span in the passage. Nevertheless, they generally suffer from generating incomplete answers or introducing redundant words when applied to the generative MRC. Thus, we extend the single-span extraction method to multi-span, proposing a new framework which enables generative MRC to be smoothly solved as multi-span extraction. Thorough experiments demonstrate that this novel approach can alleviate the dilemma between generative models and single-span models and produce answers with better-formed syntax and semantics.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.