Papers
Topics
Authors
Recent
2000 character limit reached

Comparison of Spatiotemporal Networks for Learning Video Related Tasks

Published 15 Sep 2020 in cs.CV | (2009.07338v1)

Abstract: Many methods for learning from video sequences involve temporally processing 2D CNN features from the individual frames or directly utilizing 3D convolutions within high-performing 2D CNN architectures. The focus typically remains on how to incorporate the temporal processing within an already stable spatial architecture. This work constructs an MNIST-based video dataset with parameters controlling relevant facets of common video-related tasks: classification, ordering, and speed estimation. Models trained on this dataset are shown to differ in key ways depending on the task and their use of 2D convolutions, 3D convolutions, or convolutional LSTMs. An empirical analysis indicates a complex, interdependent relationship between the spatial and temporal dimensions with design choices having a large impact on a network's ability to learn the appropriate spatiotemporal features.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.