Papers
Topics
Authors
Recent
Search
2000 character limit reached

Engineered Swift Equilibration of a Brownian Gyrator

Published 15 Sep 2020 in cond-mat.stat-mech and cond-mat.soft | (2009.06989v1)

Abstract: In the context of stochastic thermodynamics, a minimal model for non equilibrium steady states has been recently proposed: the Brownian Gyrator (BG). It describes the stochastic overdamped motion of a particle in a two dimensional harmonic potential, as in the classic Ornstein-Uhlenbeck process, but considering the simultaneous presence of two independent thermal baths. When the two baths have different temperatures, the steady BG exhibits a rotating current, a clear signature of non equilibrium dynamics. Here, we consider a time-dependent potential, and we apply a reverse-engineering approach to derive exactly the required protocol to switch from an initial steady state to a final steady state in a finite time $\tau$. The protocol can be built by first choosing an arbitrary quasi-static counterpart - with few constraints - and then adding a finite-time contribution which only depends upon the chosen quasi-static form and which is of order $1/\tau$. We also get a condition for transformations which - in finite time - conserve internal energy, useful for applications such as the design of microscopic thermal engines. Our study extends finite-time stochastic thermodynamics to transformations connecting non-equilibrium steady states.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.